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Abstract
This review emphasizes the physical principles underlying the dephasing of
nonstationary vibrational states of molecules with multiple vibrational degrees
of freedom. The motion of atoms within molecules can be described to a very
good approximation by a many-level system of coupled anharmonic quantized
oscillators. The separation of electronic and nuclear timescales, combined with
weak symmetry breaking inherent in molecular structures, guarantees that the
Hamiltonian can always be cast in a form that is local in the quantum state space
of the molecular vibrations. The resulting nonexponential dephasing dynamics
can be controlled with external fields to stabilize nonstationary quantum
states, and both quantum–classical and fully quantum control formalisms are
described. Coupled molecular vibrations interacting with external fields also
offer prospects for quantum computing because vibrational level spacings can
be made very large compared to thermal noise, and relaxation mechanisms
such as infrared fluorescence are many orders of magnitude slower than the
timescales required for coherence transfer. Finally, a toy model that provides
insights into the interaction of vibrational degrees of freedom with ‘solvent’
modes is also discussed, and exhibits nonexponential dynamics in certain
regimes.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Optical quantum control has become an important tool in atomic, materials, and molecular
physics. Examples from each of these areas include the creation of highly nonclassical
atomic states [1], of solitons in optoelectronic substrates [2], and the localization of nuclear
wavefunctions of diatomic molecules [3]. These processes rely on creating phase-correlated
off-diagonal elements ρ̂off in the system density matrix ρ̂ by using an optical field. The system
is subject to dephasing (loss of initial phase relationship in ρ̂off without loss of amplitude) and
decoherence (loss of amplitude in ρ̂off caused by environmental factors not explicitly included
in the system density matrix ρ̂). For a sufficiently large system, one part of the system can
serve as a bath for the other part, so dephasing of the two systems combined corresponds to
a decoherence process of the reduced density matrix of each part. Both full density matrices
undergoing dephasing (‘pure states’ and reduced density matrices undergoing decoherence
(‘impure states’) will be discussed in different contexts.

The systems discussed here are described by a manifold of discrete quantum states. At
first glance, dephasing in such a system seems like a trivial process: in the case of a pure
nonstationary state ρ(t) = |t〉〈t|, it results from the changing phases of its energy eigenstate
components:

0 � P(t) = Tr{ρ(0)ρ(t)} =
∑

i

|ci |4 + 2
∑

i< j

|ci |2|c j |2 cos(ωi j t) � 1, (1)

where ωI are the eigenvalues of the system and ci are the amplitudes of the pure state |t〉 in the
eigenbasis. The problem is that in coupled many-degree-of-freedom systems, the eigenvalues
ωI and corresponding eigenstates |i〉 bear no simple relationship to one another, and are
difficult to compute. In the strong coupling limit, statistical analyses apply, and much has been
learned about the behaviour of quantum states in that limit [4]. Yet statistical models such
as the Gaussian orthogonal ensemble (GOE) model do not apply when there is only partial
quantum chaos, i.e. when the coupling is not too strong [5]. This is the case for molecular
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Figure 1. Six of the molecules discussed as examples in the text. Each node corresponds to a
carbon atom, and each connecting vertex to an electron pair bond. Each carbon atom connects
via four bonds, but not all bonds to hydrogen atoms (−H) are shown explicitly. Other atoms are
shown explicitly (N = nitrogen, S = sulfur, Cl = chlorine, O = oxygen). Molecules such as
cyclohexylaniline, propanal, stilbene, and methanol can undergo internal rotation motions with
barriers ranging from 0.04 to 0.25 eV.

bonding. Dephasing therefore controls in nontrivial ways the time evolution of molecular
vibrations [6]. Quantum control over dephasing by external fields can bring about desirable
outcomes such as optical switching of vibrations [7], changing chemical reaction yields [8],
and stabilizing desirable quantum states [9]. Instead of global random matrix models, explicit
full-dimensional models or local random matrix models provide the necessary understanding
of dephasing in these systems [10, 11]. As it turns out, if one looks at a single vibrational
mode of even a small molecule, the other modes serve to decohere it, and a statistical limiting
population of that mode is eventually reached. Thus molecules can act as their own heat baths,
and serve as miniature condensed matter model systems with a controllable number of degrees
of freedom, and optically controllable interactions [12].

When atoms interact to form molecules, only a small number of valence (weakly
bound) electrons from each atom contribute to the binding energy. Although the electronic
wavefunction is highly delocalized compared to the nuclear position wavefunction, chemical
formulae generally depict nuclei as vertices connected by electron pair bonds localized between
nuclei (figure 1). This ‘Lewis’ picture is correct only in the limit of ‘heavy’ electrons,but serves
as a convenient shorthand for describing chemical bonding.

When the nuclear positions are distorted from the equilibrium geometry, the electronic
energy increases. Near equilibrium, the electronic energy can be approximated by a quadratic
function of the nuclear coordinates,which can be diagonalized to a normal mode representation.
Thus, the atoms within the molecule vibrate collectively as a set of uncoupled harmonic
oscillators. At higher energies, this approximation breaks down and anharmonic couplings
appear between modes. There the energy is more conveniently expanded in local mode
coordinates, with quadratic self-terms, cross-terms between adjacent bonds, between next-
to-adjacent bonds, etc. In other words, forces can be described accurately as being transmitted
through bonds or groups of nearby bonds. In this context it is important to note that atoms
generally make only 1–4 bonds, with occasional exceptions up to eight-electron-pair bonds:
the connectivity b of chemical formulae is relatively low, b ≈ 1–8.

The vibrational Hamiltonian has a structure conducive to expansion in localized normal
mode or local mode coordinates (section 2) [13, 14]. Higher order anharmonic couplings
decrease rapidly with the order of the coupling and with the separation between the bonds
displaced by the coupled modes. This scaling is exact in the limit of high nuclear masses
and low molecular symmetry, in which case the normal modes are delocalized over just a few
bonds [14, 15]. The majority of molecules fall into this category. As a result, correlations
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Figure 2. Single-point reduced density matrices for each of the six modes of SCCl2 as a function
of time, when a quantum state at ≈1 eV is excited. The populations decay to a Bose–Einstein
distribution. Similarly, two-point reduced density matrices show a rapid decrease of the off-
diagonal element, or decoherence of mode pairs by the remaining four modes as the Bose–Einstein
distribution is reached (see figure 17 for a 2 × 2 example). Thus molecular modes form effective
heat baths for one another at sufficiently long times. However, rather slow dynamics may be
required to achieve this equilibrium situation, opening up the possibility of quantum control during
the dephasing/decoherence process.

among couplings lead to an asymptotic slowdown of the dephasing dynamics [16, 17]. It is
this slow dynamics that potentially allows dephasing to be controlled by external fields. This
situation is significantly different from the delocalized or Fourier-space treatments used in the
solid state, but is familiar from defect-rich systems (e.g. Anderson localization) [10].

Embedding a many-atom molecule in a condensed phase environment (e.g. a solution)
adds an additional difficulty because of decoherence of any molecular wavepackets by the
solvent environment. Nonetheless, coherent control has been observed in the condensed
phase, such as in the localization of vibrational motions in methanol [7]. However, so far
only very small deviations from a diagonal density matrix have been achieved in such cases.
Simple models provide some insight into what timescale control of vibrational dephasing is
irreversibly affected by solvent degrees of freedom [18].

Even in the absence of a solvent, large molecules act like miniature condensed matter
systems: one set of modes can be considered as a bath for another set, leading to equilibration
of mode populations according to Bose–Einstein statistics with an effective temperature
T ≈ E/(k N), where E is the total excitation energy, k is Boltzmann’s constant, and N is
the number of degrees of freedom. Figure 2 shows such equilibration in thiophosgene, a
molecule with only six vibrational degrees of freedom [12]: each of the modes is decohered
by the remaining five if we look at single-mode reduced density matrices. In the 6D complete
system density matrix, this process of course appears as dephasing only, as a reminder of the
close relationship between dephasing and decoherence. This property suggests a model such
as the ‘Bose statistics triangle rule’ (BSTR) model described later.

Molecular vibrations also provide a potentially attractive way of experimenting with few-
qubit quantum gates. Nuclear magnetic resonance spectroscopy has been used to simulate
quantum computing [19], but the spacing of energy levels is very small compared to kT ,
so density matrices remain nearly diagonal. Pure states and entanglement are more easily
achieved with molecular vibrations in cooled molecules, where the energy scale can be large
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compared to kT [20]. The timescale of vibrations (10 fs–1 ps) in isolated molecules is also
long compared to those of primary relaxation mechanisms such as spontaneous emission.

2. The vibrational Hamiltonian

The coupling constants in the vibrational Hamiltonian obey scaling laws and can be
approximately factorized. In this section the origin of these properties will be explored, their
validity will be examined by comparison with accurate computational and experimental data,
and a simple local random matrix model will be presented that mimics the properties of the
vibrational Hamiltonian most important for understanding the dephasing dynamics.

2.1. Born–Oppenheimer approximation and the anharmonic oscillator model

The electronic–nuclear Hamiltonian for a molecule is given by [21]

H = Ke + V2(re) + V3(Rn, re) + Kn + V1(Rn) (2)

where K are the electronic and nuclear kinetic energies, and Vi the Coulomb operators
for electron–electron repulsion, electron–nuclear attraction, and nuclear–nuclear repulsion.
Equation (2) can be solved approximately by neglecting the slow nuclear degrees of freedom
(adiabatic or Born–Oppenheimer approximation), yielding approximate nuclear equations of
motion

Hi = Kn + Vi (Rn) (3)

for each solution (electronic state) of the truncated equation (1). In the absence of external
torque or centre-of-mass dependent forces, these equations can be represented for N atoms
in an N = (3N − 6)-dimensional manifold of nuclear degrees of freedom, and the potential
energy becomes (the i will be dropped henceforth unless a specific electronic state needs to be
referred to)

V =
∑

n=2

∑

ni

V (n)
[ni ]

N∏

i=1

(a†
i + ai)

ni (4)

where n is the overall order of a potential in the coordinates (n = ∑
ni ) and ni is the order

of an individual unitless coordinate qi = a†
i + ai . The potential constants V (n) are sorted by

order, and the subscript array n = [n1, . . . , nN ] indicates the order of individual unitless ladder
operators. In a normal mode representation there are no quadratic cross-terms, whereas in a
local mode representation there are such terms. In either representation, V (2) ∼ ω, where ω is
the vibrational frequency. This is the anharmonic oscillator model.

2.2. The scaling law and factorization of the coupling terms

The coupling constants of this model obey a simple scaling law. One can easily show using
quantum mechanical or semiclassical arguments that electronic energies and vibrations are
quantized with an energy ratio√

V (n+1)

V (n)
∝
√

h̄ω

D
∝
√

me

mn
, (5)

where ω is a typical vibrational frequency (100 meV), D is a typical energy scale for dissociating
a molecular bond (2 eV), and the masses are for electrons and nuclei. As a result, the potential
constant V (n) of a given order n scales as [11, 14, 22]

V (n) ∝
(

h̄ω

D

)n/2

= cn. (6)
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Thus two normal or local mode vibrational eigenfunctions |n〉 and |n′〉 of the quadratic
approximation to equation (3) are strongly coupled only when their quantum number difference
n = ‖n − n′‖ = ∑ |ni − n′

i | is small.
Equation (5) also shows why we need to deal with the vibrational dynamics problem

quantum mechanically instead of classically. A typical energy scale of interest for quantum
control of chemical reactions, or for accessing sufficiently many states for quantum computing,
is D. Although nuclei are reasonably massive, and vibrational energy level spacings ω are
small compared to D, the ratio D/ω < 3N − 6 for all but the smallest of molecules. Upon
dephasing, the vibrational wavefunction acquires a character where mode populations obey
Bose–Einstein statistics (see section 2.4 and figure 2); thus the average population per mode
will be <1. This is clearly in the quantum limit. Although states with many nonzero mode
quantum numbers can be coupled to many other states by ladder operators in equation (4), the
couplings are relatively weak because the mode excitation is small.

The coupling constants can be written in a cumulant expansion that allows for approximate
factorization. If we treat V[ni ] as a discrete function of the 3N − 6 parameters ni , the ln|V |
expansion becomes [14]

ln |V (n)
[ni ]| =

∑

i

ni ln |c(1)

i | +
∑

i, j

ni ni ln |c(2)

i j | + · · · . (7)

It has been shown using the central limit theorem and Wick’s theorem that if N → ∞ and if the
local or normal mode vectors are Gaussian random variables (when expressed in space-fixed
coordinates), then all terms but the first one in equation (7) vanish [14]. For real molecules,
N is of course finite and the modes are not random, but (7) is so rapidly convergent that even
the fully factorized version of equation (4),

V ≈
∑

n=2

∑

[ni ]

(±1)

N∏

i=1

cni
i (a†

i + ai)
ni , ci ∼ D1/n

i

√
ωi/Di , (8)

produces good results for highly connected molecules (section 2.4). It has also been shown
by using semiclassical connection formulae that such scaling and factorization apply to modes
which are better represented by a rotor than by an oscillator Hamiltonian [23]. An example
would be the torsion of the H2N group around the N–C bond or the torsion of the HO group
around the O–C bond in the first and last molecules of figure 1. The arguments presented here
thus cover all types of internal molecular motion. The important messages of this section are
therefore: couplings decrease exponentially quickly with coupling order, can be factorized
approximately, and the dynamics must be dealt with quantum mechanically at the energies of
interest.

2.3. Symmetry breaking and factorization of the couplings

There is one important exception where at least the second term in equation (7) must be
considered to obtain accurate coupling constants: when symmetry is broken, mixed coupling
constants become much smaller than self-coupling constants [15]. Consider the chain molecule
in figure 3, with two local C–H stretching modes at opposite ends. The first term in equation (7)

implies that V̄ (3)

[1,2] = (V (3)

[3,0]V
(3)2

[0,3])
1/3. In that case the local modes would be strongly coupled,

resulting in symmetric phase and antisymmetric phase delocalized modes. This is true if
the molecule is perfectly symmetrical. It has been shown that upon even a small symmetry
breaking (e.g. by substituting a deuterium for a hydrogen somewhere along the chain) the
modes become localized. The sensitivity of delocalized modes to symmetry breaking grows
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Figure 3. Slight symmetry breaking introduces strong localization of modes. In the hypothetical
chain molecule shown, the force constants k of the two terminal stretching modes differ by 5%,
typical of organic molecule C–H stretching modes. In a short chain the mixed coupling constants
are comparable to the local coupling constants. By m = 4 the mixed couplings are negligible
compared to the local coupling constants, and the two modes have completely localized. Bottom:
distribution of localization coefficients c(2) for a large number of organic molecules [15].

exponentially with the number m of bonds intervening between the principal groups of atoms
involved in the motion, so

V (3)
[2,1] ≈ V (3)

[1,2] ∼ V̄ (3)
[3,0]c

(2)

1,2

2 ∼ V̄ (3)
[3,0] f −m < V̄ (3)

[3,0] ≈ V̄ (3)
[0,3] (9)

where f ≈ 2–3. The same effect has also been found for internal rotor modes: vibrational
modes that in the harmonic approximation move atoms close to a rotor mode are more strongly
coupled to it. It is also possible for symmetry lowering to mediate accidental resonances, so
c(2) > 1. The ratio of actual coupling constants to the factorized couplings predicted from
equation (6) can be used to estimate the distribution function of c(2) with the assumption that
higher order corrections are significantly smaller. The distribution is shown in figure 3 for a
large number of organic molecules [15].

2.4. Comparison with computed and experimental coupling constants

Based on the observations made in sections 2.2 and 2.3, a class of scaled and factorized force
fields has been developed for computing dephasing properties of optically excited molecules.
These force fields use only minimal information about the molecule, such as the local or
normal oscillator frequencies, dissociation energies D of various bonds, spatial overlaps
between modes, and anharmonicity parameters ci . The models in the preceding sections have
been compared with molecular data. For example, the scaling of coupling constants from an
experimentally fitted vibrational potential surface of thiophosgene is compared to equation (6)
in figure 4 [24]. Ab initio quantum calculations for the anharmonic couplings of a rotor mode
in aldehydes of different chain length (figure 1) to other vibrational modes are compared to
the overlap of atomic displacements in figure 4 also [23]. Modes with smaller spatial overlap
in the harmonic approximation have smaller couplings, as predicted.
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Figure 4. Left: coupling constants of SCCl2 up to fifth order, evaluated from a vibrational
Hamiltonian fitted to over 100 vibrational energy levels. An exponential fit with scaling constant
c = 0.075 is also shown. Right: correlation between the cubic coupling strength between the
terminal internal rotation of propanal and similar aldehydes (figure 1) and other vibrational modes,
correlated with the spatial overlap of the internal rotation and vibrations.

2.5. A minimal random matrix model: the BSTR model

We can arrive at a minimal local random matrix model for vibrational dephasing by taking into
account equation (7) and remembering that vibrational quanta are bosons (figure 2) [6, 25].
A molecule with vibrational modes populated by vibrational quanta is analogous to a cavity
populated by photons. Vibrational quantum number populations of modes relax towards the
Bose–Einstein distribution because of the couplings in equation (7), and photon populations
relax towards the Bose–Einstein distribution because of creation/annihilation at the thermal
cavity wall; the difference is in the distribution of mode frequencies. The ‘Bose statistics
triangle rule’ model posits the following simple rules for the Hamiltonian matrix [25]:

(1) The Hii are Poisson distributed with average spacing ρ(E)−1.
(2) Hi j = ±V cni j , where ni j is the quantum number difference between states |i〉 and | j〉.
(3) ni j is normally distributed with mean n̄ = E/ω̄ and variance σ 2

n = 2E2/(3N − 6)ω2.
(4) For any triplet i, j, k, |ni j − n jk | � nik � |ni j + n jk |.
Rule (1) is satisfied for uncoupled harmonic oscillators with irrational frequency ratios. Rule
(2) follows from equation (6). Rule (3) is required to achieve a Bose–Einstein distribution
at long times. The triangle rule (4) requires more explanation: if two states have a small
quantum number difference and a third state has a large quantum number difference from one
of them, it will also have a large quantum number difference from the other one (figure 5).
This rule has to be rigorously satisfied by the vibrational quantum numbers; because Hi j is
monotonic in ni j , a similar rule is satisfied by ratios of coupling matrix elements, but only to
the extent that (2) holds. Comparison with electronic structure calculations and experimentally
measured couplings shows that the rule is satisfied by 80–90% of coupling matrix elements in
practice [6, 24].

The BSTR model qualitatively reproduces all the results obtained with experimentally
derived or accurate computational Hamiltonian operators (section 4). It can only be used to
follow statistical trends for an ensemble of molecules because it only contains highly averaged
molecular quantities such as V , c, and ω̄. Its dephasing function P(t) and other properties
differ very much from the behaviour of a Gaussian orthogonal ensemble (GOE) matrix because
rules (2) and (4) force states to be coupled hierarchically. Of course, a GOE matrix can always
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Figure 5. The origin of the triangle rule in state space. If coupling elements scale as V cni j , where
ni j is the quantum number difference between a pair of states, then the couplings will also obey a
triangle rule. The BSTR simulation for a 9D system of oscillators obeying the rules in section 2.5
shows a sub-exponential decay of the dephasing function P(t).

be brought into the form of a BSTR matrix by a unitary transformation, but its eigenvectors
will be random linear combinations of the BSTR eigenvectors that cannot be achieved as initial
states of the dynamics for reasons discussed in the next section.

3. The vibrational state space

In this section we discuss the concept of the vibrational state space [11, 16], which is useful
because of the structure of the Hamiltonian inherent in equation (7) or in the BSTR rules.
The advantage of the state space is that it allows easy visualization of the consequences of
equation (7), much in the same way that Feynman diagrams are generally easier to follow than
the corresponding written-out path integrals.

3.1. State space structure and the state density

In classical mechanics, action variables are useful for representing the phase space, particularly
if some of the actions are conserved or only slowly varying as a function of time (near-invariants
of the motion). Quantum mechanically, this translates into a state space with quantum numbers
ni ∼ Ji/h̄ [4]. For a molecule with 3N − 6 vibrational degrees of freedom, the state space
is 3N − 6 dimensional. Because the couplings decrease rapidly with order, it makes sense to
label the state space with normal mode or local mode quantum numbers. Of course, not all of
these will be preserved as good quantum numbers. Each state or ‘cell’ in state space occupies
a volume of roughly h̄n.

Figure 6 shows a depiction of three of the N dimensions of a molecular state space. Each
local or normal mode state is labelled by a vector n = [n1, n2, . . . , n3N−6], and the 1-norm ni j

of the difference between two vectors is the quantum number difference between two states.
The states are not eigenstates, but as discussed in section 3.2, ultrafast optical excitation can
access a subset of these states. In principle, the vibrational wavepacket then is free to expand in
N dimensions under the unitary time evolution operator. If the excitation pulse is sufficiently
narrow band, then only the energy shell is accessible to dephasing by energy conservation, and
energy flow is restricted to N − 1 dimensions. The energy shell appears as a triangular facet
in the positive octant in figure 6.
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Figure 6. State space showing three of the quantum number (action coordinate) axes. The red (grey
in print) hexagon shows states that contribute to the local density of states of state |i〉. States |i〉 and
| j〉 are coupled directly, |i〉 and | f 〉 via a coupling chain. In real molecules irrational relationships
between the frequencies cause the states or ‘cells’ in state space to not exactly lie on the energy
shell, as shown here. Also shown in blue (black • in print) are four states that can represent a
coupled two-qubit system as described in the text.

Three important concepts for understanding the dynamics are the total density of states
on the energy shell, the local density of states on the energy shell, and the local number of
coupled states. The total density of states in state space is simply given by

ρ(E) = 1

�E

∑

n

δn(E,�E), (10)

where the function δn(E,�E) equals 1 if the state space point n is located in the half-open
interval [E − �E/2, E + �E/2), and 0 otherwise. By choosing the interval �E sufficiently
large, ρ can be represented as a relatively smooth function. It has been shown that this function
can be expanded in a series of moments of the vibrational frequencies ωI , and the leading term
is [15]

ρ(E) =
√

3N − 6�(E/h̄ω̄ + N)

�(E/h̄ω̄)�(N)h̄ω̄
, (11)

with ω̄ being the average molecular vibrational frequency in units of rad s−1. Unlike semi-
empirically modified semiclassical expressions, this expression scales correctly for all limits
of E and N .

The local density of states ρ
(n)
n (E) on the energy shell is the number of states surrounding

a state with vector n at a distance n. In figure 6, it is shown by a hexagon about state |i〉.
The reason that this function is generally more relevant than the total density of states is that
states are coupled only locally according to equation (7), so quantum amplitude can flow only
locally. The expansion for the local density of states analogous to equation (10) is [15]

ρ(n)
n (E) =

√
NπN−1πN

(N − 1)!ω̄
nN−2 fn(E) + O(nN−3) ≈ Nn+1/2

(n/2)!2ω̄
fn(E). (12)

Here 0 < fn(E) � 1 is a function which is less than unity if n is a vector within distance n
of the edge of state space because no states exist outside the positive octant in figure 6, and
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πN is the N th prime. The approximation holds in the common case where n < N . Unlike
ρ(E), ρ

(n)
n (E) scales only as a low order polynomial of the dimension N of the state space; it

does not increase significantly with energy.
The third concept, closely related to the local density of states, is the local number of

coupled states. This number is a measure of how many nearby states a state |i〉 directly mixes
with. In addition to the coupling strength, it takes into account that states need to be nearby in
energy in order to mix: they need to be in resonance. For example, assume that the Hamiltonian
contains a term V (3)

[1,2]a
†
1a2

2 . This term mixes states |n, m〉 and |n + 1, m − 2〉, but the mixing
will be weak unless the states are in resonance. In the harmonic approximation, this means
that ω1 ≈ 2ω2 so E1 ≈ E2. The perturbative criterion [11]

L(n)
i j = {1 + (�Ei j/V (n)

i f )2}−1/2, (13)

which varies between 0 and 1, can be used to assess whether a state | j〉 is strongly coupled to
a state |i〉. In equation (13), �Ei j is the energy gap between states |i〉 and | j〉, and V (n) is the
nth-order coupling connecting the states. It has been shown that the local number of coupled
states scales as [15]

N (n)
n (E) ≈ 2 ln 2ρ(n)

n V cn−3c(2)(E/ω̄)n/2. (14)

This function increases with energy, albeit polynomially, and therefore much more slowly than
ρ(E). A related criterion T has been derived by analytical mean field theory [10, 26]. The
locally coupled states do not uniformly fill out state space around the state |n〉 [11, 27]. Modes
are localized and couplings are transmitted through small groups of bonds, so only a small
number � � N of resonances is active at any given position in state space (the maximum
number of linearly independent resonances is of course N). If modes were localized to single
bonds and f in equation (9) is large, then the number of resonances would not exceed the
connectivity of the molecular formulae, about 1–4. In reality not all bond vibrations are in
resonance (this tends to decrease the number further), but modes are more delocalized and
f ≈ 2–3 (this tends to increase the number of resonances). The combination of branching
b ≈ 1–4 and an exponential fall-off of couplings e−m with the number of bonds (equation (9))
results in � ≈ 2–4 resonances being active at any point in state space, even in large molecules
(as long as their symmetry is sufficiently low). This is very different from the usual condensed
phase ‘lattice’ limit, where very long range collective modes can exist, undisturbed by defects.
From this perspective, the vibrational heat capacity of large molecules should behave more
closely according to Einstein’s formula than Debye’s formula, just like glasses do.

3.2. Edge states, interior states, and feature states

The function fn(E) is dependent on the position of a state within state space. This positioning
has important effects on the local dynamics [28], and we distinguish two general classes of
states: edge states such as | f 〉 in figure 6 have excitation in only one or a few modes, while
interior states such as |i〉 have excitation in many or all modes [11]. Neither edge states nor
interior states are eigenstates of the vibrational Hamiltonian (4). Under unitary time evolution,
amplitude will leak into nearby states, so the dephasing function or ‘survival probability’
P(t) = |〈0|t〉|2 of equation (1) will decrease. At a given energy E , the dephasing of edge
and interior states is restricted for different reasons. Edge states are restricted by the state
space boundaries: only a small number of nearby states is available because fn(E) ≈ 0.
Interior states are restricted by weaker couplings: the many modes are each populated by a
small number of quanta ni ≈ E/[Nωi ] even as E approaches the molecular bond dissociation
energy D, so modes are more nearly harmonic. According to equation (14), edge states are
more strongly coupled to a smaller number of states, and interior states are more weakly
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Figure 7. Both dipole and vibrational coupling operators are local in state space. Top row: feature
states accessed by the dipole operator; the left shows a transition active in only one mode (5 features),
the right, one active in two modes according to equation (15) (11 features). Two energy shells are
shown in blue and red; only states on the same energy shell are excited simultaneously by a narrow
band optical pulse (1 feature on each left energy shell, 2 features on each right energy shell). Next
row: the coupling operator mixes optically accessed features with other states along the direction
2ω2 − ω1. Couplings are shown on the lower (red) and higher (blue) energy shells. Next row: low
resolution spectra of the feature states and high resolution spectra of the underlying eigenstates that
light up in the spectrum. On the left-hand side, only one feature lights up on each energy shell; on
the right-hand side, two features overlap on each energy shell (red/black and blue/black). Bottom
row: experimental data for the molecule SCCl2, showing 9 features, one labelled, with 6 quantum
numbers, by its location in state space ([24]).

coupled to a larger number of states. The existence of edge and interior states distinguishes
local random matrix models such as the BSTR model from global random matrix models such
as the GOE one, where all states have a statistically equal likelihood of being connected.

The most important state space concept from the point of view of optical excitation is
the feature state (figure 7), a group of eigenstates which shares the same source of oscillator
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strength to ‘light up’ upon optical excitation [12, 29]. If the local or normal mode states in
vibrational state space were very strongly mixed, and if optical transitions accessed states
uniformly in state space, spectra obeying GOE statistics would be observed. Instead, one finds
highly regular features in spectra even at the energy scale D, as illustrated at the bottom of
figure 7 with experimental data from SCCl2 (figure 1) [24]. These features are arranged in
hierarchical patterns (groups of states within groups) discussed in section 4. This regularity
results from a cooperation between the local couplings and the locality of the dipole operator
in state space.

Optical transitions between molecular states occur via a transition dipole operator µ̂. Like
the potential energy surfaces Vi(Rn) in equation (3), the dipole operator is a slowly varying
function of the nuclear coordinates. Therefore the transition dipole matrix elements also fall
off rapidly when two states |i〉 and | j〉 have a large separation in state space:

|µn,n′ |2 = |〈n|µ̂|n′〉|2 ∝
N∏

i=1

c
|ni−n′

i −n0i |
µi . (15)

This equation is analogous to equation (7), except for the introduction of an offset n0. The
offset is 0 if the initial state |i〉 is the ground state and the optical pulse is in the infrared.
Infrared pulses (E ≈ h̄ω) can excite only a few vibrational states near the ground state. The
offset is nonzero if visible or UV pulses (E ≈ D) are used to make a transition from one
electronic surface Vi(Rn) to another electronic surface Vj (Rn) of equation (3). The reason
is that different electronic surfaces Vi have different structures (equilibrium positions of the
atoms) and vibrational frequencies, so vibrational states offset by n0 have maximum overlap
(the Franck–Condon principle; strictly speaking two electronic surfaces may have several
vectors n0). Because electronically excited states differ only locally in structure (the low
molecular symmetry at work again), the vector n0 is close to zero for most degrees of freedom.
This is illustrated in figure 7. Thus even transitions between different electronic surfaces access
regions of state space near the edges because the initial state must be thermally populated and
hence near the origin of state space.

More of the state space can be accessed by ‘multi-resonance’ experiments [30, 31]. For
example, a sequence of two optical pulses from electronic state Vi up to Vj and back down to
Vi can access states with large quantum numbers in some modes. This is known as a ‘double-
resonance’ experiment. Every additional light pulse digs a little deeper into state space [31].
Experiments up to triple resonance have been performed, but truly interior states of large
molecules have not been accessed optically, and assigned feature states are generally edge,
near-edge states, or combinations of a few edge states that share oscillator strength.

Equation (15) ensures that spectral intensity is carried by well-defined regions of state
space, and equations (6) and (13) ensure that dephasing does not cause the spectral intensity
to leak far out of these regions. As a result, feature states such as the ones shown in figure 7
can contain many eigenstates, but these share the same source of oscillator strength from a
localized set of states in state space. In section 4 it will be seen that optically accessible feature
states decay even more slowly than interior states, although the dynamics for the latter is also
restricted because they contain few quanta per mode. In the spectrum this means that even
when all eigenstates are observed in an energy window (access to the full density of states
exists), many will contribute to the feature rather weakly.

3.3. Resonances and dynamical tunnelling (superexchange)

From the above discussion, one mechanism for dephasing an initially prepared feature state is
obvious: the local couplings transport amplitude around the state space, fanning out from an
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Figure 8. Resonant quantum diffusion in state space (anticlockwise). In the three-dimensional
state space shown here, the vibrational wavepacket diffuses on a manifold of fractional dimension
between 1 and 2. One-dimensional reduction is caused by energy conservation (two-dimensional
energy shell). Further reduction is caused by localized couplings, so not all directions on the energy
shell can be accessed from every point (see figure 7 also). Nonresonant diffusion via superexchange
is also possible if the system is very near the threshold for energy flow.

initially excited feature state. This resonant mechanism of quantum diffusion [16], shown in
figure 8, is operative when the energy is high enough that the local number of coupled states
in equation (14) exceeds 1. Equation (14) has the form of a local density of states times a
coupling strength, so free dephasing occurs when this product becomes large enough.

One question arises in connection with this dephasing mechanism: are high order
couplings directly connecting two states or chains of lower order couplings indirectly
connecting them more important contributions to the dephasing process? Two effects compete:
low order couplings are larger and there are many chains connecting a pair of states; this favours
chains. Chains can suffer phase cancellation if different paths between two states have opposite
phases [15]. This is best illustrated by a 4 × 4 matrix toy model. Consider the matrix

H =




0 1 1 0
1 5 0 1
1 0 5 −1
0 1 −1 10



 . (16)

States 1 and 4 are coupled via two equally strong coupling chains 1 → 2 → 4 and 1 → 3 → 4.
Each chain by itself mixes states 1 and 4 significantly in the eigenstates near E = 0 and 10, but
together they cause no mixing at all because of the −1 phase factor in the 1 → 3 → 4 chain.
Although this is an extreme example, this effect causes the importance of coupling chains to
grow as the root of the number of chains only. Coupling chains and direct couplings generally
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make comparable contributions, especially to the long time dynamics. As a general rule, direct
higher order couplings are more important if the local density of states is increased by raising
E , not N .

Dephasing thresholds as a function of energy are often lower than expected from direct
couplings or direct coupling chains [32]. In other words, feature states consisting of several
eigenstates can be observed even when resonant couplings are too weak to allow dephasing of
a feature state. In that case, a different mechanism is operative: superexchange (also called
dynamical tunnelling or doubly off-resonant coupling) [33, 34]. In superexchange, two states
on the energy shell are connected by states far off the energy shell, and mix with each other,
but not with the off-resonant state. Again, this mechanism is most easily illustrated by a toy
model. Consider the matrix

H =
( 0 0 10

0 0.1 11
10 11 1000

)
. (17)

States 1 and 2 are not coupled directly, only off-resonantly though state 3. The eigenvectors for
the system are approximately (0.82,0.58, −0.01), (0.51, −0.87, 0), and (−0.01, −0.01, 0.999),
indicating that the two nearly degenerate states are strongly mixed by superexchange [35]. This
mechanism still maintains locality of the feature state in state space: the strongest couplings
still correspond to two small changes in quantum number from 1 → 3 → 2, even though a
coupling chain dominates over a small higher order coupling in this case. Figure 9 shows
an experimental and computational example of this for the molecule triazine [35]. The
superexchange mechanism is more likely for edge states than for interior states. Thus it
does not dominate the dynamics at long times, or once the energy has increased sufficiently
for direct couplings to contribute [15]. Skeletal vibrations (involving the heavy atoms, such
as carbon, nitrogen, oxygen, and higher mass atoms) leave the superexchange limit faster than
hydrogenic stretching modes.

4. Dephasing dynamics

Sections 2 and 3 provide the framework for understanding the dephasing dynamics of
vibrational states, or decoherence of mode dynamics (for few-mode density matrices such
as in figure 2). In this section we examine some formal analytical results, computational data,
and experimental measurements of the dynamics. The dephasing dynamics is not described by
global statistical models even when E ≈ D. Although the survival probability in equation (1)
generally approaches the statistical limit above the threshold energy for dephasing, it does so
much more slowly than predicted by global statistical models.

4.1. Short time, asymptotic behaviour, and perturbation theory

The behaviour of equation (1) is trivial in certain limits [36]. Assuming the state is normalized
such that

∑ |ci |2 = 1, then as t → 0 the time evolution becomes

P(t → 0) = cos
[√∑

|ci |2|c j |2ω2
i j t
]
. (18)

A finite-size quantum system not in the continuum has a roll-off phase in accord with short
time perturbation theory. At long times, the limit of equation (1) averaged over a short time
window simply becomes

P̄(t → ∞) =
∑

|ci |4 = σ = N−1
p � 1. (19)
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Figure 9. Spectral structure caused by vibrational dephasing. Top left: two quanta of excitation
in a CH stretch of triazine (figure 1), showing how the feature is already distributed over several
eigenstates, just above the threshold for dephasing (N (3) ≈ 1 in equation (14)). The calculation is
a 21-dimensional filtered basis window diagonalization using the Mandelstahm–Taylor algorithm
based on work by Neuhauser. Top right: the hierarchy of timescales in the experimental vibrational
spectrum of methanol (figure 1) obtained by Rizzo and co-workers. Bottom: experimentally
measured vibrational states of SCCl2 up to dissociation. Energy scales for ω and D are indicated,
as well as nominal mode populations in the stretching and out-of-plane bending vibration for two
highly excited states. The bracket above the spectrum indicates the window size accessible by
commercially available pulse-shaped titanium:sapphire femtosecond lasers for phase manipulation
during quantum control. The window contains >32 states and can simulate a five-qubit system.

Although the summation in the second term of equation (1) contains more terms, the cos[ωi j t]
behave like a collection of random variables, so the fluctuations as t → ∞ are in fact of order
σ . σ is known as the dilution factor and describes over how many eigenstates Np a feature in
the spectrum has been diluted.

At intermediate times, the dynamics deviate nontrivially from perturbation theory. The
prediction of first-order perturbation theory, assuming that the coupling matrix elements are
random Gaussian variables, is that

P(t) = (1 − σ)e−kt + σ, k = 2π

h̄
ρ(E)〈V 〉2, (20)

where 〈V 〉2 is the coupling variance.

4.2. Anisotropic quantum diffusion

The assumption of random Gaussian variables is not justified when couplings scale according
to equation (7) or the rules in section 2.5 are obeyed [25]. Couplings fluctuate more strongly
with energy and are more likely to be small near edge states. Thus equation (20) can be valid
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Figure 10. Comparison of experimental dephasing with the golden rule, power law models, and
quantum dynamics calculations. Top right: cyclohexylaniline above the dephasing threshold; data
from [39], analysis from [17]. Bottom left: the most extensive experimental data and quantum
dynamics simulations are available for SCCl2 [12]. Bottom left: methanol decay corresponding to
figure 9, as calculated in [76].

only at short times. Scaling arguments and a one-step renormalization treatment show that the
dephasing function is instead given by [12, 37];

P(t) = (1 − σ)

(
1 +

t

δ/2

)−δ/2

, δ = ∂ ln N̄ (n)

∂ ln n
, (21)

where n is the distance in state space, and N (n) is defined in equation (14). δ is thus the fractal
dimension of the manifold of locally coupled states. In a molecule with N modes where states
are coupled in all N directions in state space subject to energy conservation, δ = N − 1.
Equation (20) would then be recovered for large N . As discussed in section 3.1, only a small
number � of resonances are usually significant at any given point in state space, so we expect
δ ≈ � � N to hold. The approximate equality should hold because states are coupled by
resonances, and locally coupled states therefore occur in state space only in the direction of
resonances [12].

The factor 1/2 in equation (21) results from the assumption of random phase cancellation
among coupling paths because of the signs in equation (8). As seen in figure 4, this assumption
is justified when couplings are computed using accurate ab initio models for the molecular
electronic structure. Figure 10 shows experimentally measured dephasing dynamics for three
of the molecules in figure 1, excited with an average energy of 0.8–2 eV ≈ D [12, 17, 38, 39].
The result shows the initial decay, an exponential deflationary phase where the short time
perturbation theory matches experiment,and subsequent power law dynamics until the baseline
σ is reached. Oscillations or ‘quantum beats’ are superimposed on the decay; in fact, the first
oscillatory decay which matches the exponential phase can be thought of as a quantum beat
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that occurs before states near the feature are sufficiently populated for return flux of amplitude,
and hence destructive interference, to occur. Quantum beats are always present because of
destructive interference illustrated by the toy model matrix in equation (16). Their magnitude
is proportional to σ as t → ∞, and D(t)−1 at other times (D is defined in section 4.5).

Figure 5 shows dynamics computed from the local random matrix BSTR model of
section 2.5 [25]. The model also has a power law tail. It has been shown that a GOE-like
exponential decay or decay with a coherence hole is obtained if rules (2) or (4) in section 2.5
are relaxed. Another way of interpreting the BSTR dynamics is that only a small fraction of
the N quantum numbers required to describe the oscillator system break down severely. The
remaining quantum numbers are approximately conserved locally. Which ones are conserved
can be different in different parts of state space.

4.3. Energy thresholds

An important prediction of equation (21) is an energy threshold for dephasing [10, 11, 16, 32].
The local number of coupled states depends on energy. At low energy, where the local density
of states is small and couplings are also smaller (the system is more harmonic), N̄ (n) < 1 for all
values of n. As a result the fractal dimension of the coupling manifold drops below 1, and the
vibrational states become Anderson localized [10]. Each optically addressable feature contains
only one eigenstate, and no dephasing can occur. Figure 9 shows the spectrum of a molecule
just above that threshold: if the couplings of triazine are reduced by 30% from the value used
to compute figure 9, no dephasing occurs [35]. The other example in figure 10 illustrates this
in the time domain: below the threshold for dephasing, P(t) for cyclohexylaniline (figure 1)
is highly oscillatory because the feature contains only two eigenstates; above the threshold,
a much smoother decay is observed because the feature now covers many eigenstates [39].
However, despite the fact that the latter feature state contains all the eigenstates in that energy
region, and therefore accesses a statistical mixture of eigenstates at long time, the dephasing
is still slow.

4.4. Feature state dilution

As discussed earlier, feature states are groups of eigenstates that share the same transition
strength because the dipole and coupling operators are both local in state space. An important
statistical measure of dephasing via local couplings is the dilution factor σ , already defined in
equation (19) as the long time average of P(t). According to equation (19) it equals the sum of
the squares of the normalized spectral intensities Ii = c∗

i ci . The GOE model predicts that as
energy increases, the probability distribution for σ gradually shifts from peaked at 1 to peaked
at 0 as features ‘dilute’ over many eigenstates. The BSTR model as well as analytical mean
field calculations predict that the probability distribution is bimodal, that is, a state undergoes
either no dephasing or strong dephasing, but intermediate cases are rare [40–42]. The latter is
borne out by a comparison with experimental data (figure 11).

Closely related to σ is Heller’s F parameter [43] which can be defined as

F = σmin/σ, (22)

where σmin is the dilution factor for all eigenstates under the feature envelope contributing with
maximum intensity while preserving the width of the feature state. Due to quantum mechanical
phase cancellation effects, F cannot exceed 1/3. The nodal structure (orthogonality) of
eigenstates prevents them from contributing maximally even in the global random matrix
model. At long times, most molecules tend to obey this statistical measure, indicating that
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Figure 11. Experimental, analytical, and local random matrix model distribution functions of the
dilution factor σ , or inverse number of participating states. Features break up into eigenstates, and
this shows the distribution of the number of eigenstates per feature. The distributions are bimodal
near the dephasing threshold, meaning that features either tend to break into many eigenstates, or
are very robust against dephasing. Nloc is the local number of coupled states obtained by summing
equation (14) over n = 1–4.

although equation (21) stems the dephasing process at intermediate times, state space is fully
accessed as t → ∞ once the energy threshold has been passed.

4.5. Hierarchical spectra

When a given initial state accesses only a small fraction of state space directly, and so does the
next state, and so on, the resulting spectra will have a hierarchical structure. This is illustrated in
figure 9, which shows experimental spectra for two molecules,SCCl2 and methanol [38, 44]. In
each case, the dephasing function P(t) is shown in figure 10. Although the vibrational density
matrix does eventually visit all of state space (i.e. the statistically predicted value of σ is
reached) when the system is above the threshold, this happens with sub-exponential dynamics.
Because couplings are local in state space, not necessarily small, slow dephasing also implies
that the structure of the vibrational density matrix becomes randomized only gradually. This
can be put on a firm mathematical footing by the quantity [12]

D(t) = 1 +
[1 − ρ00(t)]2

Tr{diag[ρii (t)]2} + ρ00(t)2
. (23)

Here ρ00 is the component of the density matrix that corresponds to the feature state at t = 0.
D = 1 at t = 0, and increases to Np, the number of participating states, as t → ∞. On
removing the initial state ρ00 from the trace, D counts how many states in addition to the
initial state are participating in state space. In a GOE, D would immediately jump to Np

because states are globally connected, whereas in a locally coupled state space, D increases
sub-exponentially towards Np (figure 12).
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Figure 12. The number of state space cells D(t) participating in dephasing of SCCl2 increases
as a power law with time. Because each cell requires an optical amplitude and phase for control,
2D(t) measures controllability. Current systems allow from 128 to 2000 degrees of freedom to
be controlled. The time range for control is extended by over an order of magnitude compared to
what is expected for a local random matrix model.

4.6. State space regularity and chemical reactions

Chemical reactions occur when the energy D is exceeded. At that point a bond is eventually
broken and six vibrational modes are converted into three translational and three rotational
modes (fewer if some fragments are linear). A particularly simple model treats the reaction as
a decoherence mechanism on top of the internal dephasing of the system,by adding exponential
decay terms R(t) to the appropriate diagonal and off-diagonal matrix elements of the vibrational
density matrix.

If the density matrix is represented in an eigenstate representation, then all states ρii

whose energy exceeds D will decohere; eigenstates of course will not dephase. In state space,
the opposite is the case: all feature states will dephase, but reactivity is localized and only
certain feature states will decohere. For example, to break an A–B bond, the A–B vibrational
stretching mode must be excited to k quanta, so the mode energy exceeds D. Distributing
the same energy into many modes does not produce a reactive state. Thus interior states are
generally not reactive, while certain edge states in state space concentrate enough energy for
reaction. The same type of argument applies to isomerization reactions where a bond is rotated
to change the molecular shape because internal rotation modes scale similarly (section 2.3) [45].

Vibrational dephasing therefore affects reactivity in two ways. It can dephase an optically
prepared reactive feature state, thereby potentially reducing the reaction rate; or it can dephase
an unreactive feature state, thereby populating reactive feature states, usually via interior states.
In the last case, dephasing makes the chemical reaction possible. Neither case implies that
dephasing actually governs the reaction rate. If P(t) decays much faster than R(t), then
the reaction rate will be determined by the ratio of the reactive states to the total number
of energetically accessible cells in state space because the entire accessible phase space is
populated by dephasing before the onset of decoherence [46]:

k ∼ NR(�E)

ρ�E
. (24)
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Figure 13. The molecule trans-stilbene (figure 1) isomerizes around the central carbon–carbon
double bond with a barrier of about 1000 cm−1. A local random matrix model given by
Leitner and Wolynes, based on a potential surfaces computed by Martinez and co-workers, with
dephasing parameters parametrized according to Bigwood and Gruebele obtains good agreement
with experiment, while the global random matrix theory gives too fast a result. The reason is that
slow dephasing restricts access to those states in state space which allow internal rotation about the
double bond.

Here k is the rate, NR(�E) is the number of reactive state space cells within an energy window
�E , and ρ is the total density of states. This statistical limit includes RRKM theories for bond
breaking (unimolecular reactions),and transition state theories for reactions involving collision
and exchange of atoms (bimolecular reactions).

The timescales in practice are such that k varies from ns−1 to ps−1 as the energy increases
from D to 1.1D above threshold, while the exponential deflationary phase of P(t) lasts
<0.1 ps when the excitation energy approaches D. For this reason, statistical formulae such
as equation (24) generally provide a good description of reaction rates.

Slow dephasing, or the power law tail, can have an observable effect on reaction dynamics.
If the tail extends significantly into the reaction timescale k−1, the reaction rate is affected by
dephasing: reactive edge states are populated more slowly than they decay, and the rate is
decreased. Because P(t) generally decays below 0.1–0.01 before the power law tail sets in,
the effect will only cause a correction of a few per cent. If the initial dephasing is comparable
to R(t), the effect will be more pronounced. The best-studied experimental and computational
example is the isomerization of trans-stilbene, which involves a rotation around the double bond
in figure 1 [45, 47–51]. It occurs over a low barrier, so the energy scale D is comparable to h̄ω.
Therefore dephasing is still near the threshold, and thus slow. Figure 13 shows experimental
data for the isomerization rate of stilbene [52]. The statistical prediction has the rate increase
as a function of energy much faster than the experimental observations. When vibrational
dephasing is included using a model Hamiltonian of the form (8) based on frequencies ωI and
isomerization energies D from accurate electronic structure calculations, a slower reaction rate
in agreement with experiment is obtained. In summary, the largest deviations from statistical
theory would be expected in isomerization reactions with small D, although examples also
exist for dissociation reactions.

5. Quantum control

Despite the power law tail, P(t) decays rapidly enough for statistical theories to be a good
approximation in most cases. Left to itself, dephasing would be an interesting curio that causes
small corrections, usually less than a factor of two, in chemical reaction rates.
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What makes slow dephasing interesting is that it opens up the possibility of optical quantum
control [53]. Optical quantum control occurs when a molecule is continually subject to optical
pulses that introduce additional couplings among states in state space [54–56]. These additional
couplings can shape the vibrational density matrix, for example localizing it in a part of state
space that gives rise only to a specific reaction product [9],or introducing entanglement that can
be used for quantum computation [20]. If dephasing is fast, many states must be controlled;
if dephasing is slow, only a small part of state space must be controlled, making control
practically feasible. Each state in state space to be controlled optically requires one phase
and one amplitude degree of freedom in the field. The controllability of the system is thus
determined by 2D from equation (23) [9]. Currently, pulse shaping of femtosecond pulses
limits the number of degrees of freedom to <2000, and no exponential growth in this technology
can be expected. Thus, it makes an important difference whether the number N of cells in
state space required to describe the vibrational density matrix grows as a polynomial instead
of as an exponential function of time. Control is feasible over a much longer period of time
(figure 12) in the former case.

This is illustrated in figure 14 for a particular type of quantum control: ‘freezing’ an
initially prepared feature state that would normally undergo dephasing [9]. This is not the
most general type of quantum control possible on a feature state, but it has several desirable
properties, and we use it as an example throughout. Firstly, the initially prepared state may have
symmetry properties that cause it to react to form specific products, while the full set of states
accessed statistically produce a number of reaction products. Secondly, freezing a vibrational
feature has the advantage that only the local structure of state space around the feature needs
to be known. This information is generally available if the feature can be accessed optically.
The idea behind quantum control then is to adjust the amplitude and phase degrees of freedom
of the field in order to ‘freeze’, or stabilize, a feature state and prevent it from dephasing.

In the following subsections the quantum–classical and second-quantized theory for
optical control of vibrational dephasing will be described briefly. Finally, the utility of
molecular vibrational modes for modelling quantum computers with a small number of qubits
will be discussed.

5.1. Quantum–classical control

In this approach, the vibrational degrees of freedom are treated quantum mechanically, while
the molecule–field interaction is treated classically [57]:

H (t) = K + V − µ̂E(c, t), (25)

where K is the molecular kinetic energy operator, V is from equations (4) or (8), µ̂ is the
transition dipole operator discussed in 3.2, and E(c, t) is the classical electric field with
adjustable amplitude and phase parameters c. Many representations of the electric field are
possible. A particularly useful one expands the field in wavelets [9]. At each field frequency,
a pair of wavelets describes the amplitude and phase of the field. This allows optimization
algorithms to operate simultaneously on the coarse-grained and fine-grained features of the
electric field.

An extensive methodology for optimizing the field, subject to constraints on the
wavefunction and field, has been developed by Rabitz and co-workers based on optimal control
concepts from engineering [58, 59]. Formal analyses of the controllability of quantum systems
by classical fields have been developed [60]. The goal is to treat the system as much as possible
as a ‘black box’ to facilitate optimization in the absence of experimental knowledge. The
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Figure 14. Quantum control to ‘freeze’ a wavepacket. An initially prepared feature (upper left
panel) begins to dephase (upper right panel). Its undesirable components are cycled to a different
set of vibrational/electronic states by a shaped, phase-coherent laser pulse (upper right panel), then
returned to the desired feature by another shaped pulse (lower right panel). This cycle is repeated
to keep the feature ‘frozen,’ although in practice leakage occurs because the optical field cannot
cycle all necessary quantum states with 100% efficiency (lower left panel). This corresponds to
the controllability limit in figure 12. ‘Freezing’ is more robust than more general ‘guiding’ of
wavepackets by quantum control because it requires only two local domains of state space, which
are both optically accessible and whose structure/Hamiltonian is therefore known.

optimization target functional has the general form

T (c) ∼
∫ ∞

−∞
dt W (t) Tr

{
ρTarget Ot e−i

∫
H (c,t)dtρ0 e+i

∫
H (c,t)dt

}
. (26)

In this equation, the initial density matrix is propagated in time and overlapped with the target
density matrix. This overlap is to be maximized in a time window W (t) by adjusting c.
(The ordering operator Ot is required because H is time dependent.) Equation (26) requires
nonlinear optimization.

Here we pursue a more explicit path, motivated by the observation that the vibrational
couplings subject to control are local in state space, thus making the control more robust than
would be anticipated for a global random matrix Hamiltonian. We lift off the black box and use
the simplifying properties of the control Hamiltonian. A particularly favourable representation
of the dynamics uses a wavelet expansion of the electric field, and uses the SUR algorithm
to compute the dynamics of the vibrational density matrix [9, 61]. Simulated annealing or
a genetic algorithm then maximizes the overlap of the time-evolving vibrational state with
the initial feature state, thus ‘freezing’ the wavepacket. The applied electric field effectively
cancels out the vibrational couplings that lead to dephasing.
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Figure 15. Quantum control for ‘freezing’ a wavepacket using the quantum–classical formalism.
The wavefunction is propagated in time using the Hamiltonian, and the target functional is
computed. Guesses at improved optical field degrees of freedom are generated using simulated
annealing (SA) or genetic algorithms (GA), to simulate the phase and amplitude control masks of an
experiment. Wavelets represent the phases and amplitudes hierarchically, to match the hierarchical
structure of the spectra. On the left, uncontrolled dephasing and ‘frozen’ dephasing are shown.
Because the optical field controls a finite number of degrees of freedom, freezing is achieved for a
finite duration (see figure 14).

In terms of the eigenstate picture for a pure system, the dynamics appears rather trivial:
the phases of the eigenstates evolve at different rates, and the applied electric field cycles each
eigenstate phase coherently to another state and back, with the correct phase lag to cancel out
the time evolution, thus preserving the initial state. However, if a large molecule were described
by a global random matrix, control would be practically impossible at energies ∼D because the
number of eigenstates would greatly exceed the number of control parameters c. This is where
hierarchical dephasing comes to the rescue: the number of states in state space required to
describe the vibrational density matrix increases only geometrically in time, not exponentially.
In state space, quantum control can be pictured as in figure 14: a localized feature is initially
prepared. It slowly leaks to nearby states, which are cycled back with the correct phase to the
original feature by the electric field. A small number of degrees of freedom c are required
as long as the density matrix remains localized. Of course, the control is not perfect and
eventually the vibrational density matrix will leak into undesirable portions of state space.

The quantum–classical control scheme and a calculation showing ‘freezing’ of vibrational
dephasing in SCCl2 for a limited but useful period of time are shown in figure 15. The 10 ps
timescale achieved is useful because reaction rates are of the order of ps−1 above the threshold
D, so dephasing can no longer randomize the vibrational density matrix, thereby making
nonstatistical outcomes possible.

5.2. Fully quantum control

The external field can also be quantized, replacing equation (25) by

H = K + V +
∑

h̄ωk(a
†
k ak + 1

2 )+
∑

ck[K + V , µ̂](a†
k + ak). (27)
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Figure 16. The full quantum control calculation for a six-level system with initial density matrix
|1〉〈1|, three intermediate states, and two ‘product’ states |5〉 and |6〉. The allowed transitions are
shown as lines. Equation (29) is computed using the known energy level spacings and transition
dipole moments, with either a path integral representation for the harmonic field degrees of freedom,
or a filtered basis set containing coherent field states |n̄, ϕ〉 parametrized by amplitude and phase
and six molecular states. A 2D cut though the full phase/amplitude control surface is shown,
showing symmetry relations between two of the phases.

For simplicity, polarization degrees of freedom are not included. At a first glance, equation (27)
appears as a major complication over equation (25) because a classical parametric electric
field has been replaced by an infinite number of quantum degrees of freedom. In practice,
the situation is not as bad because the harmonic oscillator representation is exact for photons,
and path integral and other efficient solution methods exist for a bath of harmonic oscillators
coupled linearly to a system. Equation (27) introduces another important advantage over
equation (25). The control functional now becomes

T (c) ∼
∫ ∞

−∞
dt W (t) Tr

{
ρTarget e−it H/h̄ρ0(c) e+it H/h̄

}
. (28)

The dependence on the control parameters no longer occurs in the exponential because the full
Hamiltonian (27) is nonparametric. Thus powerful tools of linear optimization can be brought
to bear on the problem. The integral in equation (28) has been evaluated explicitly [62]:

T [c] ∼
∑

i

(ρT (c))ii (ρ0(c))ii (29)

and T [c] obtained noniteratively by using the Hellmann–Feynman theorem (only matrix
elements of the density operators connecting states of equal energy appear in equation (29))
and single-step linear optimization.

Figure 16 applies the methodology to a simple model system useful in quantum control of
chemical reactions. The density matrix is initially in the ground state, and coherent interaction
with photons via a set of intermediate states can be used to optimize population of either a
‘left’ or ‘right’ product state. A two-dimensional cut through the optimization surface as a
function of two phase angles is shown. To provide well-defined phase angles, a coherent state
basis for the field is used to evaluate equation (29), rather than a number state basis. Figure 16
also illustrates a useful approximation that can be made to describe the field, and which is
already implicit in equation (27): the bound part of the potential V supports a discrete set of
states, and in the continuum the two ‘product’ states must be isoenergetic so quantum control
is possible as t → ∞. Therefore only a discrete set of frequencies are required to represent
the field, and if a finite number of field cycles of the type shown in figure 15 are sufficient, a
rather small set of oscillators are required in equation (27).
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Full molecular quantum control opens up the possibility of more information-rich
molecular spectroscopies. When a quantum–classical Hamiltonian is used to describe
molecule–field interactions, the emphasis is on how the field controls the molecule. The
situation is more symmetrical in equation (27). Interaction with the molecule modifies the
phases and amplitudes of the field degrees of freedom. Of course molecular spectroscopy is
as old as the study of molecules, and single-photon techniques such as absorption or emission
spectroscopy, and multi-photon techniques such as the one needed to effect control in figure 14,
have undergone decades of development. Yet equation (28) indicates the possibility of novel
linear and nonlinear spectroscopies based on quantum control. The target density matrix
contains information about field degrees of freedom beyond the overall intensity of the field
as a function of wavelength or wavevector. Even a simple linear absorption process can create
complex field patterns, which can be detected with amplitude- and phase-sensitive detectors.
Thus much more information can be extracted about the state of a molecule by studying degrees
of freedom of the output field beyond overall intensity or average wavevector. This will require
a new generation of detectors that can monitor phase and amplitude of output fields as a function
of time and position, but prototypes of such detectors have already been reported [63].

5.3. Optical molecular quantum computing

The Hamiltonian in equations (3) and (4) has another potential application: few-qubit quantum
computing. Quantum computation requires a source of qubits (two-level systems), and
methods for entangling them as well as for performing measurements on them. The biggest
problem currently faced by even small model systems for quantum computers is the purity
of states [64]. The decoherence of candidate systems is often very fast, and electromagnetic
radiation creates only very small deviations from a diagonal density matrix. NMR models
for quantum computing are an example of the problems faced: although individual molecules
may reach a large degree of coherence, they cannot be probed individually because of the
low sensitivity associated with magnetic dipole transitions, and the whole ensemble is nearly
diagonal [19, 65]. This can be circumvented by picking systems whose characteristic energy
scale D greatly exceeds kT , such as optically trapped ions [66]. Such systems still suffer from
slow time evolution because of the constraints of transferring coherence among the qubits.

Molecular vibrations provide a convenient system for few-qubit quantum computing: the
energy scale ω to D at which states are excited can be set to greatly exceed kT , so pure states
can be created to a good approximation optically; mode couplings and phase-coherent optical
transfer of amplitude can create entangled states on a femtosecond timescale and modify their
phases; nonthermal decoherence mechanisms such as fluorescence are slow by comparison
to the computing process (nanosecond versus sub-picosecond); larger molecules can serve as
their own ‘baths,’ allowing the effects of dephasing (decoherence in a reduced density matrix)
to be studied in detail, and with a great degree of experimental control, as described above.

One way of implementing qubits and operations on qubits by using quantum control of
molecular vibrations has been discussed in [20]. In this approach, each vibrational degree
of freedom in state space can be used to represent one qubit, for a total of N qubits in an
N-oscillator molecule. In principle, quite respectable numbers of qubits can be achieved; for
example, N = 84 qubits could be implemented in a molecule such as cyclohexylaniline in
figure 1. In practice, the number of qubits is limited to the modes separately addressable via
infrared optical excitation. Figure 6 illustrates how a 3D molecular state space could implement
two qubits via two accessible modes. Each mode is of course an anharmonic oscillator and not
a two-level system, but anharmonicity is often large enough (>2 meV or 1 ps timescale) that
fast optical pulse sequences can address only the lowest two states without too much unwanted
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leakage into higher energy states. Thus the weak anharmonicity of the molecular system can
mimic the very strong effective anharmonicity of a two-level system [20].

Implementing a Hadamard transform

HA =
(

1 1
1 −1

)
(30)

on a single mode requires a pulse sequence that will put the mode in a superposition state of its
ground and first excited vibrational levels, without affecting any of the other modes. This has
been demonstrated computationally with >98% efficiency because ωI is sufficiently different
for different molecular modes that they are individually optically addressable. The individual
addressability of low energy interior states in state space also allows entangled states to be
prepared optically, such as by pumping |00〉 → (|00〉 ± |11〉)/√2. Phase shift operations
can be effected in the simplest case by free propagation (e.g. the two ± states in the previous
sentence interconvert on a timescale π/[ω1 + ω2]). However, universal phase shift pulses in
the presence of multiple qubits are more difficult to realize because multiple states evolve with
different phases. Qubits can interact via low order mode couplings such as the local mode
coupling q1q2, which mixes the |01〉 and |10〉 local mode states. Efficiencies in the 70% range
or higher have been computed for various types of logic gate using the molecule acetylene,
so dephasing effects that reduce the perfection of quantum logic gates can be kept small [20].
Decoherence is negligible in molecular beams, where infrared emission lifetimes, interaction
lifetimes, and collision lifetimes lie in the microsecond range, about 109 times slower than the
computational process.

The vibrational Hamiltonian can also be exploited for quantum computing in a different
way. As discussed in section 4, state space is accessed locally by optical excitation (local dipole
operator), and dephasing processes are local (equation (4)). Quantum control with a reasonable
number of control parameters can thus be used to implement quantum logic gates in highly
vibrationally excited molecules. Rather than mapping each qubit onto a single mode, one can
make use of the equivalence of a system with m = 2N nondegenerate states, whose phases
and amplitudes can be arbitrarily adjusted by optical pulses, with an N-qubit system [67].

In order to compute with qubits in this form, one has to effect arbitrary unitary
transformations among the 2N states. If the m states being manipulated are approximately
vibrational eigenstates, such manipulations can be done by combining free evolution
(introducing phase shifts) and population transfers via a gateway state |g〉 (amplitude and
phase changes). The latter is done by resonantly pumping from a state |mi〉 to |g〉, then from
|g〉 to |m j〉, and repeating this cycle with other pairs of states until the desired phase/amplitude
transformation has been accomplished on the set of states {|mi〉}. The individual cycles in
such a scheme have been called ‘STIRAP’ [55]. The implementation of such pulse sequences
to perform gate operations is more complicated than in the ‘one mode per qubit’ approach
because individual qubits no longer can be addressed by a single wavelength (for example, the
energy difference between states |00〉 and |01〉 no longer even approximately equals the energy
difference between |10〉 and |11〉 states, so the second qubit cannot be individually addressed
by a single colour). Thus full wavelength multiplexing is required, which makes the addressing
of the N-qubit system grow as 2N . This is a general problem faced by quantum computing
schemes: even if the computation is very efficient, the process of encoding (or decoding) the
information may be exponentially complex.

Figure 9 illustrates an energy range of 37 meV in the spectrum of SCCl2 that contains
32 optically addressable feature states, sufficient to implement five qubits. Quantum control
for the same energy range is demonstrated in figure 15. The dynamical range of timescales is
thus 2π/37 meV ∼ 0.1 ps to 2π/32/37 meV ∼ 3 ps. The 32 features undergo dephasing in
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state space that is fully controllable on a 10 ps timescale (figure 15), so gate operations can be
completed on the 3 ps timescale required. Although molecular vibrations are not scalable to
large numbers of qubits, they present us with a useful atomic-scale laboratory with controllable
effects of dephasing on quantum logic gates.

6. Solvent–molecule interaction and decoherence

So far, we have mainly considered molecules as their own ‘heat baths’. If the entire density
matrix is examined, only dephasing is possible and the purity of the initial vibrational density
matrix is maintained. Yet as shown in figure 2,even a very small molecule with only six degrees
of freedom can be discussed using the language of reduced density matrices. Each mode of
SCCl2 is decohered by the ensemble of the remaining five modes,and its population approaches
a Bose–Einstein distribution via a power law decay. Molecular vibrations thus provide a nice
model system for discussing the connection between dephasing and decoherence.

The decoherence of molecular vibrations by an external solvent is also of great interest [68–
72]. For some molecules, it can be surprisingly slow. For example, it comes as no surprise
that in the gas phase, the dissociation of an HgI2 (mercury iodide) molecule produces products
whose vibrational motions are coherently locked to the initial vibrational motion resulting from
the dissociation process [73]. Analogous experiments in the condensed phase have shown
that phase coherence is maintained for a period of several vibrations when the same reaction
is examined in a weakly coupling solvent [68]. Nonetheless, statistical models predicting
Lorentzian lineshapes generally provide a satisfactory description of decoherence, and line
broadening models such as Brownian oscillators coupled to the system are used successfully
to describe the dynamics [74].

Here we discuss a different kind of toy model, based on the Caldeira–Leggett
Hamiltonian [75], which differentiates dynamics caused by different solvent shells [18].
Figure 17 illustrates the model. Rather than describing the solute molecule in great detail,
and treating the solvent like a set of harmonic oscillators linearly coupled to the solute but not
to one another (see equation (27)), we treat the solute like a two-level system, but include the
shell structure of the solvent, and anharmonic couplings within and among solvent shells:

H = hc�

2
σz +

hc�

2
σx +

∑
Vi(a

†
i + ai) +

∑
h̄ωi

(
a†

i ai +
1

2

)

+
∑

n=3

∑

[ni ]

(±1)

N∏

i=1

cni
i (a†

i + ai)
ni . (31)

In equation (29), σx,y are Pauli matrices, � is the tunnelling splitting, and Vi is a coupling
of the two-level system to the first shell of bath modes. The ωI are the solvent frequencies
contributing to the spectral density, and the ci are couplings within and among bath shells, such
that the first shell couples only to the second, the second to the first and third, etc. When enough
shells are included, the quasi-continuous but structured spectral density shown in figure 17 is
obtained. The model chooses to examine in more detail the dynamics within the solvent, and
not the solute. It goes beyond the linear response approximation so the coupling parameters
are not temperature dependent (as they have to be if the spectral density is modelled by a set
of uncoupled harmonic oscillators).

The results in figure 17 show that the decoherence of the two-level system by the solvent
degrees of freedom can be polynomial in time rather than exponentially fast with realistic
choices of the coupling constants. In this model, increasing the density of states by adding
more harmonic degrees of freedom to the first shell or by increasing the number of shells, or
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Figure 17. The toy model for interaction of solvent shells with a two-level solute. The greater
the number of shells added, the closer the approach of the spectral density J (ω) to a continuous
function. On the right the decoherence of the TLS according to equation (32) is computed for
different intrabath coupling strengths (relative to the TLS splitting). Intrabath couplings, not a
continuous spectral density or large system–bath couplings, are the most efficient mechanism for
obtaining exponential decoherence as opposed to a power law.

by increasing the strength of the couplings between the bath and two-level system, are not the
most efficient means of wiping out sub-exponential decoherence. Increasing the anharmonic
couplings among first-shell degrees of freedom, and to a lesser extent increasing anharmonic
couplings to the second shell proved most effective at inducing exponentially fast decoherence
of the two-level system, as monitored by the magnitude of the off-diagonal matrix element of
the reduced two-level system density matrix,

D(t) = |〈+| TrBath{ρ(t)}|−〉|2. (32)

Anharmonic couplings within the bath, and exchange of degrees of freedom between the
first and higher shells are thus the most effective means of introducing decoherence when the
bath is discrete. Although a number of beautiful results have been obtained for the strict spin-
boson Hamiltonian with a purely harmonic continuous bath, equation (31) is probably a more
accurate model for real molecule–solvent interactions: solvation shells exist in real solvents
(typically 4–10 molecules in the first shell), and have a limited number of degrees of freedom.
Thus even for interactions with a solvent, a local density of states rather than a global density
of states is important, and it is strong couplings among states comprising the local density of
states that give rise to exponential dephasing. In that case, decoherence in a weakly coupled
solvent will ultimately be limited by diffusion of degrees of freedom from one shell to another,
a process that usually occurs on a timescale of picoseconds, thus potentially leaving a window
for quantum control of the solute even in a condensed phase environment.
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